
Clustering with TeeChart - Preview
Tutorial
David Berneda
June 2011
Steema Software

The TeeChart VCL preview library includes classes and components to perform
"clustering" on your data.

Clustering is the process of grouping data according to how well related are the
individual items.

For more information on clustering visit the following Wikipedia link:
http://en.wikipedia.org/wiki/Cluster_analysis

Download executable example:

http://www.steema.us/files/public/teechart/vcl/demos/clustering/TeeChart_Clustering.zip

Classes and Units

The TeeClustering.pas unit contains abstract "engine" classes that perform the
clustering algorithms.

Three different clustering methods are provided:

• TKMeansClustering
• THierarchicalClustering
• TQTClustering (Quality Threshold)

These classes derive from a common abstract class: TBaseClustering

Each clustering type has its own properties that determine how will the clusters
be calculated.

After calculating, you can access the Clusters property, which is a TList of
TCluster objects.

A TCluster contains child clusters (Items[]), so you can check which input data
items belong to which cluster, or in the case of the Hierarchical type, access the
tree structure (clusters and sub-clusters).

The input data (your data) is not contained by the above classes.
Data is passed to the clustering engine through a "provider" class.

There is currently one kind of data provider (TSeriesProvider) to cluster XY or
XYZ Series points.

This class is implemented in the TeeClusteringTool.pas unit, together with a
charting Tool class (TClusteringTool) to make things easier and more automatic.

Basic Example

Example runtime code (it can be done at design-time too, without coding) :

uses TeeClusteringTool;

var tool : TClusteringTool;

tool:=TClusteringTool.Create(Self);
tool.ParentChart:=Chart1;
tool.Series:=Series1; // your series
tool.Method:=cmKMeans;
tool.KMeans.NumClusters:=5;

tool.Execute;

After execution, you can loop on the resulting output clusters, for example:

var t : Integer;
for t:=0 to tool.Clusters.Count-1 do
 Memo1.Lines.Add('Cluster: '+IntToStr(t)+' contains:
'+IntToStr(tool.Clusters[t].Count)+' points');

TClusteringTool

This tool will automatically perform clustering using the choosen method and
parameters, and it will optionally paint each series point with a different color
indicating which cluster they belong to, or draw polygons around each group of
cluster's items, among other things.

Properties:

ClusteringTool1.Method := cmHierarchical;
ClusteringTool1.ColorEach := True; // paint Series with one color per cluster
ClusteringTool1.ShowBounds := True; // draws convex polygons bounding
each cluster points
ClusteringTool1.Centers.Visible := True; // shows cluster centers
ClusteringTool1.Centroids.Visible := True; // shows cluster centroids

Other properties include Brush, Pen and Transparency, used when drawing
cluster polygon boundaries.

Methods:

Several helper methods are provided:

// Obtain cluster's center and centroid XY points in Series scales:
var P : TPointFloat;
P:=ClusteringTool1.GetClusterCenter(ClusteringTool1.Clusters[3]);
P:=ClusteringTool1.GetClusterCentroid(ClusteringTool1.Clusters[2]);

// Obtain an array of XY points (in screen pixel coordinates), that belong to a
cluster:
var PP : TPointArray;
ClusteringTool1.GetClusterPoints(ClusteringTool1.Clusters[4], PP);
...
PP:=nil;

// Get cluster statistics:
var S : TClusterStats;
S:=ClusteringTool1.GetStats(ClusteringTool1.Clusters[0]);

Calculation parameters

Each clustering algorithm needs different parameters:

K-Means:

ClusteringTool1.KMeans.NumClusters := 10; // Number of minimum clusters
("K")
ClusteringTool1.KMeans.MaxIterations := 1000; // Maximum number of
iterations before stopping

Hierarchical:

ClusteringTool1.Hierarchical.NumClusters := 8; // Number of tree root clusters

QT:

ClusteringTool1.QTClustering.MinCount := 30; // Minimum number of points to
form a cluster
ClusteringTool1.QTClustering.MaxDiameter := 100; // Maximum "diameter" a
cluster can grow

Common parameters:

Distance

Cluster calculation is based on the "distance" between a data item and the other
data items.

There are several ways to calculate the "distance" between items.
The algorithms are agnostic, they call the Provider (ie: Series provider) to obtain
the distances.

For example, on a XY scatter plot, the distance between points can be the
hypotenuse (Pythagoras' theorem), that is, the simple Euclidean distance
between a point XY and another XY.

Distance calculations implemented:

dmEuclidean, dmSquaredEuclidean, dmManhattan, dmMinkowski, dmSorensen,
dmChebyshev

Example:

ClusteringTool1.Distance := dmMinkowski;
ClusteringTool1.MinkowskiLambda := 4;

Linkage

There are several ways to calculate the "distance" between clusters when one
or the two clusters have more than one item. This is called "linkage".

The most simple way is using each cluster "center" (this means no linkage
occurs).

Other linkage styles implemented:

lmSingle

Also called "minimum". The distance between cluster A and B is the minimum
distance between all items in cluster A and all items in cluster B.

lmComplete

Also called "maximum". The distance between cluster A and B is the maximum
distance between all items in cluster A and all items in cluster B.

lmAverage

The distance between cluster A and B is the average distance between all items
in cluster A and all items in cluster B.

lmWard

The result is the increase on "error sum of squares" when adding cluster B
items to cluster A.

Calculation speed

Clustering is a slow process by nature. Each clustering method has different
performance bottlenecks, proportional to the number of input data items.

The TeeClustering.pas unit has been greatly fine-tuned to optimize the speed of
each algorithm, although much work is needed to find more advanced
techniques that require less CPU cycles.

Speed examples:

(Time in milliseconds, Intel i5 430Mobile @ 2.27Ghz)

Algorithm Number of input data items

 5000 20000 50000 100000

K-Means 171 390 3245 12168

K-Means algorithm chooses initial random clusters, so consecutive executions
give different results.

Algorithm Number of input data items

 500 1000 2000 5000

Quality Threshold 46 172 702 4633

Quality Threshold is much slower than K-Means and needs much more memory.

Algorithm Number of input data items

 500 1000 2000 5000

Hierarchical 46 156 999 12839

Hierarchical is also slower than K-Means, and speed decreases exponentially
on number of input data.

