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The TeeChart VCL preview library includes classes and components to perform 
"clustering" on your data. 

Clustering is the process of grouping data according to how well related are the 
individual items. 

For more information on clustering visit the following Wikipedia link: 
http://en.wikipedia.org/wiki/Cluster_analysis    

Download executable example: 

http://www.steema.us/files/public/teechart/vcl/demos/clustering/TeeChart_Clustering.zip 

 

 

Classes and Units 

The TeeClustering.pas unit contains abstract "engine" classes that perform the 
clustering algorithms. 



Three different clustering methods are provided: 

• TKMeansClustering 
• THierarchicalClustering 
• TQTClustering (Quality Threshold) 

These classes derive from a common abstract class:  TBaseClustering 

Each clustering type has its own properties that determine how will the clusters 
be calculated. 

After calculating, you can access the Clusters property, which is a TList of 
TCluster objects. 

A TCluster contains child clusters (Items[ ]), so you can check which input data 
items belong to which cluster, or in the case of the Hierarchical type, access the 
tree structure (clusters and sub-clusters). 

The input data (your data) is not contained by the above classes.   
Data is passed to the clustering engine through a "provider" class. 

There is currently one kind of data provider (TSeriesProvider) to cluster XY or 
XYZ Series points. 

This class is implemented in the TeeClusteringTool.pas unit, together with a 
charting Tool class (TClusteringTool) to make things easier and more automatic. 

Basic Example 

Example runtime code (it can be done at design-time too, without coding) : 

uses TeeClusteringTool; 

var tool : TClusteringTool; 
 
tool:=TClusteringTool.Create(Self); 
tool.ParentChart:=Chart1; 
tool.Series:=Series1;              // your series 
tool.Method:=cmKMeans; 
tool.KMeans.NumClusters:=5;  

tool.Execute; 
 
After execution, you can loop on the resulting output clusters, for example: 

var t : Integer; 
for t:=0 to tool.Clusters.Count-1 do 
    Memo1.Lines.Add( 'Cluster: '+IntToStr(t)+' contains: 
'+IntToStr(tool.Clusters[t].Count)+' points' ); 
  



TClusteringTool 

This tool will automatically perform clustering using the choosen method and 
parameters, and it will optionally paint each series point with a different color 
indicating which cluster they belong to, or draw polygons around each group of 
cluster's items, among other things. 

Properties: 

ClusteringTool1.Method := cmHierarchical; 
ClusteringTool1.ColorEach := True;    // paint Series with one color per cluster 
ClusteringTool1.ShowBounds := True;   // draws convex polygons bounding 
each cluster points 
ClusteringTool1.Centers.Visible := True;   // shows cluster centers 
ClusteringTool1.Centroids.Visible := True;  // shows cluster centroids 

Other properties include Brush, Pen and Transparency, used when drawing 
cluster polygon boundaries. 
 
Methods: 

Several helper methods are provided: 

// Obtain cluster's center and centroid XY points in Series scales: 
var P : TPointFloat; 
P:=ClusteringTool1.GetClusterCenter( ClusteringTool1.Clusters[3] ); 
P:=ClusteringTool1.GetClusterCentroid( ClusteringTool1.Clusters[2] );  

// Obtain an array of XY points (in screen pixel coordinates), that belong to a 
cluster: 
var PP : TPointArray; 
ClusteringTool1.GetClusterPoints( ClusteringTool1.Clusters[4], PP); 
... 
PP:=nil; 

// Get cluster statistics: 
var S : TClusterStats; 
S:=ClusteringTool1.GetStats(  ClusteringTool1.Clusters[0] ); 

Calculation parameters 

Each clustering algorithm needs different parameters: 

K-Means: 

ClusteringTool1.KMeans.NumClusters := 10;   // Number of minimum clusters 
("K") 
ClusteringTool1.KMeans.MaxIterations := 1000;   // Maximum number of 
iterations before stopping 



Hierarchical: 

ClusteringTool1.Hierarchical.NumClusters := 8;   // Number of tree root clusters 

QT: 

ClusteringTool1.QTClustering.MinCount := 30;   // Minimum number of points to 
form a cluster 
ClusteringTool1.QTClustering.MaxDiameter := 100;   // Maximum "diameter" a 
cluster can grow 

  

Common parameters: 

Distance 

Cluster calculation is based on the "distance" between a data item and the other 
data items. 

There are several ways to calculate the "distance" between items. 
The algorithms are agnostic, they call the Provider (ie: Series provider) to obtain 
the distances. 

For example, on a XY scatter plot, the distance between points can be the 
hypotenuse (Pythagoras' theorem), that is, the simple Euclidean distance 
between a point XY and another XY. 

Distance calculations implemented: 

dmEuclidean, dmSquaredEuclidean, dmManhattan, dmMinkowski, dmSorensen, 
dmChebyshev 

Example: 

ClusteringTool1.Distance := dmMinkowski; 
ClusteringTool1.MinkowskiLambda := 4; 

 

Linkage 

There are several ways to calculate the "distance" between clusters when one 
or the two clusters have more than one item. This is called "linkage". 
 
The most simple way is using each cluster "center" (this means no linkage 
occurs). 

Other linkage styles implemented: 



lmSingle 
 
Also called "minimum". The distance between cluster A and B is the minimum 
distance between all items in cluster A and all items in cluster B.  

lmComplete 

Also called "maximum". The distance between cluster A and B is the maximum 
distance between all items in cluster A and all items in cluster B.  

lmAverage 
 
The distance between cluster A and B is the average distance between all items 
in cluster A and all items in cluster B.  

lmWard 

The result is the increase on "error sum of squares" when adding cluster B 
items to cluster A. 
 
  

  

Calculation speed 

Clustering is a slow process by nature. Each clustering method has different 
performance bottlenecks, proportional to the number of input data items. 

The TeeClustering.pas unit has been greatly fine-tuned to optimize the speed of 
each algorithm, although much work is needed to find more advanced 
techniques that require less CPU cycles. 

Speed examples: 

(Time in milliseconds, Intel i5 430Mobile @ 2.27Ghz) 

Algorithm Number of input data items  

  5000 20000 50000 100000 

K-Means 171 390 3245 12168 

K-Means algorithm chooses initial random clusters, so consecutive executions 
give different results. 

  

Algorithm Number of input data items  

  500 1000 2000 5000 



Quality Threshold 46 172 702 4633 

Quality Threshold is much slower than K-Means and needs much more memory. 

  

Algorithm Number of input data items  

  500 1000 2000 5000 

Hierarchical 46 156 999 12839 

Hierarchical is also slower than K-Means, and speed decreases exponentially 
on number of input data. 

 

  


